Malware classification based on double byte feature encoding
نویسندگان
چکیده
منابع مشابه
Feature Selection for Malware Classification
In applying machine learning to malware identification, different types of features have proven to be successful. These features have also been tested with different kinds of classification methodologies and have had varying degrees of success. Every time a new machine learning methodology is introduced for classifying malware, there is the potential for increasing the overall quality of malwar...
متن کاملFeature Reduction to Speed Up Malware Classification
In statistical classification work, one method of speeding up the process is to use only a small percentage of the total parameter set available. In this paper, we apply this technique both to the classification of malware and the identification of malware from a set combined with cleanware. In order to demonstrate the usefulness of our method, we use the same sets of malware and cleanware as i...
متن کاملFeature Selection and Extraction for Malware Classification
The explosive amount of malware continues their threats in network and operating systems. Signature-based method is widely used for detecting malware. Unfortunately, it is unable to determine variant malware on-the-fly. On the hand, behavior-based method can effectively characterize the behaviors of malware. However, it is time-consuming to train and predict for each specific family of malware....
متن کاملDetecting Malware Variants by Byte Frequency
In order to make lots of new malwares fast and cheaply, attacker can simply modify the existing malwares based on their binary files to produce new ones, malware variants. Malware variants refer to all the new malwares manually or automatically produced from any existing malware. However, such simple approach to produce malwares can change signatures of the original malware so that the new malw...
متن کاملExploring Timeline-Based Malware Classification
Over the decades or so, Anti-Malware (AM) communities have been faced with a substantial increase in malware activity, including the development of ever-more-sophisticated methods of evading detection. Researchers have argued that an AM strategy which is successful in a given time period cannot work at a much later date due to the changes in malware design. Despite this argument, in this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Alexandria Engineering Journal
سال: 2021
ISSN: 1110-0168
DOI: 10.1016/j.aej.2021.04.076